Brunel University

Brunel University in West London is a dynamic institution with over 13,000 students and over 1,000 academic staff operating in a vibrant culture of research excellence.  With a turnover of more than £190 million, the University is a Higher Education and research establishment with considerable intellectual, financial and social resources and makes a major contribution to the economy and community of the West London region. It also plays a significant role in the higher education scene nationally and has numerous national and international links and partnerships with both academia and industry.

Brunel prides itself on its multicultural environment and has gained countless benefits from having staff and students from over 113 different countries contributing to both its academic and social environment. Brunel has a long history of inviting international staff to be part of the University, and it provides a dynamic and vibrant environment for international visitors.

Brunel has a long history of successful bidding for European funding and of managing EU projects, and is currently coordinating 11 FP7 EU projects, 1 Horizon 2020 project  and it is also a partner on more than 50 other projects across a broad range of EU  funding schemes, including FP7 and Horizon 2020.

Brunel research is focused around three interdisciplinary research institutes. , addressing three dimensions of sustainable development and the synergies and processes that link them within the context of multi- and inter-disciplinary research and innovation.

Brunel has a long history of successful bidding for European funding and of managing EU projects, and is currently coordinating 11 FP7 EU projects, 1 Horizon 2020 project  and it is also a partner on more than 50 other projects across a broad range of EU  funding schemes, including FP7 and Horizon 2020. Brunel was partner or coordinator on over 150 projects within FP7 within cumulative value to Brunel of over €30 M, and has been already successful with several Horizon 2020 proposals. 

The Institute of Energy Futures brings together researchers from a range of disciplines to investigate and develop innovative energy efficient technologies and processes to address societal needs and greenhouse gas emissions targets whilst taking into consideration the influence of human behavior.  The research concentrates on end use energy demand reduction, energy generation from renewable energy sources and efficient electrical power distribution and utilisation. The Institute comprises four major themes.  Advanced Engines and Biofuels, Energy Efficient and Sustainable Technologies, Resource Efficient Future Cities and Smart Power Networks.

Institute of Environment, Health and Societiesis concerned with research inhuman health and wellbeing which are rooted in the creation and maintenance of healthy environments, including our social, cultural, chemical and physical environments. Through the creation , management and protection of these environments, our research aims to promote biodiversity and human health and prevent and manage diseases and disorders. The Institute main themes include Health& Environment, Healthy Ageing, Health Economics, Synthetic Biology, Biomedical Engineering & Healthcare Technologies, and Social Sciences and Health.

Institute of Materials and Manufacturing will focuses on the development of novel and sustainable materials and manufacturing processes that will allow manufacturing costs to be reduced, product quality to be improved, safety and reliability needs to be met and exceeded and, perhaps most importantly, innovation to be encouraged. Research themes  include Liquid Metal Engineering, Materials Characterisation & Processing, Micro-Nano Manufacturing, Structural Integrity and Design for Sustainable Manufacturing.
Twitter: @Bruneluni

London Higher Europe Contact:

Dr  Yulia Matskevich, Research Development Manager (EU & International)
+44 (0)1895 266 209

Dr Valentina Stojceska
Professor Savvas Tassou

FLEXOLIGHTING Horizon 2020 project


The FLEXOLIGHTING programme aims to deliver fully scaled-up innovative and environmentally sensitive systems for OLED manufacture. Due to commence 01 January 2015, the three-year programme will develop a set of new materials, methods and production processes that address the key issues of life time, light uniformity over large area, and manufacturing on flexible or conformable surfaces that currently limit OLED technology being widely adopted. The project will realise a revolutionary new lighting system of choice for a wide range of potential commercial applications. The programme is designed specifically to adopt, adapt, develop and enhance key lab-based and early development stage reel-to-reel capable printing technology and apply it to the OLED production field. The commercial applicability and potential of the project is clearly demonstrated by the breadth and diversity of the consortium members who expect to be able to generate increased sales and revenue streams through their involvement in the project. They include: Axitron:...

Suprabio - Innovative bio solutions

February 2010 - January 2014

Declining petroleum resources, increased demand for petroleum by emerging economies, and political and environmental concerns about fossil fuels are driving our society to search for new sources of liquid fuels and commodity chemicals. The only current sustainable source of organic carbon is plant biomass. The European Commission funded the SUPRABIO project to look at development of the integrated biorefinery, addressing the need to develop economically viable and energy-efficient processes through intensification, integration and full use of waste streams. The research was undertaken by a consortium of 16 partner organisations from 8 countries, coordinated by Brunel University. The project has generated a range of commercial outcomes, from improved biomass pretreatment and enhanced processing of pyrolysis oil, to algal bioreactors and a novel cellulosic fibre already shown to improve the properties of composite materials. Nine developments have been rated at technology readiness level 7 or above. Four patents have already been filed, with...

Ultra High Efficiency Engines and Fuels for Future Low Carbon Vehicles

Professor Hua Zhao, together with Dr Jun Xia, Professor A. Cairns and Dr A. Pesiridis (Department of Mechanical, Aerospace and Civil Engineering) has been awarded a major research grant to the value of £1.04million from the EPSRC to research and develop a novel internal combustion engines for future low carbon vehicles. The project will be carried out in the Centre for the Advanced Powertrains and Fuels, a research theme in the Institute of Energy Future and is part of a consortium comprising University of Brighton, University of Oxford and UCL, which will investigate how to improve the operation of internal combustion engines by as much as one third efficiency and how new fuels' performance can be used in future engines to bring emissions close to zero.   A number of recent national and international reports have concluded that internal combustion (IC) engines will be the dominant power plant in automobiles for the next...

National Centre for Sustainable Energy Use in Food Chains (CSEF)

Working through the National Centre for Sustainable Energy Use in Food Chains (CSEF), Brunel created a ‘sustainable model’ for waste reduction specific to the company’s production processes. Creating a sustainable food system is a huge challenge in today’s world. Retailers require manufacturers to comply with their sustainability targets and are increasingly looking for suppliers to be proactive in delivering environmental best practice. One food manufacturer wanted to improve the quality of its baking products but in order to increase its sustainability credentials it also needed to reduce the energy used and waste generated in their production. The manufacturer approached Brunel to seek advice on resolving these issues and on the most appropriate funding available for their business. Working through the National Centre for Sustainable Energy Use in Food Chains (CSEF), Brunel created a ‘sustainable model’ for waste reduction specific to the company’s production processes.  The partnership enabled the company to: •    understand the...

Energy efficient localised cooling systems for food manufacturing facilities

A multinational food manufacturer was interested in reducing the energy consumption of refrigeration systems used to cool chilled food manufacturing facilities and approached the National Centre for Sustainable Energy Use in Food Chains (CSEF) for innovative solutions.  These facilities are normally large spaces with high ceiling heights where food processing takes place along production lines at low level.  The conventional cooling systems employed for the purpose supply cold air at high level, cooling the whole space and thus wasting significant amounts of energy even though cooling is only required at low level. The team at CSEF proposed an innovative solution to the problem and worked together with the food manufacturer and an air distribution company to obtain funding from Innovate UK to investigate, develop and test the proposed methodology. The investigations involved: monitoring of air distribution and the thermal environment in a number of food manufacturing facilities simulation of the thermal environment and air...

HiPerDNO (High Performance Computing Technologies for Smart Distribution Network Operation)

Future electricity distribution networks with mass deployment of network equipment sensors and instrumentation, millions of smart meters, small-scale embedded generation, and responsive load will generate vast amounts of data requiring near to real-time analysis. Cloud and grid computing will enable scalable data mining, feature extraction, and near to real-time state estimation. These and other high performance computing  tools and techniques have been recently developed to cost-effectively solve large scale computational challenges in areas such as genomics, biomedicine, particle physics and other major scientific and engineering fields that require similarly scalable communications, computation and data analysis. Based on such recent success it was the aim of this research project is to develop a new generation of distribution network management systems that exploit novel near to real-time high performance computing (HPC) solutions with inherent security and intelligent communications for smart distribution network operation and management. HiPerDNO project has successfully designed, built, and demonstrated...